SAS Programming Fundamentals I

DCS/TASC/Advanced Support Team
Center for Information Technology
National Institutes of Health

Summer 2001






SAS Programming Fundamentals |1

This course builds on skills taught in (212) - SAS Programming Fundamentals I. Its focus is on
expanding Base SAS programming skills by including the DATA step management
components of the Base SAS software...how to manipulate SAS data set effectively. Once you
have completed both courses(212) and (213) you have a strong programming foundation for
becoming a successful Base SAS programmer.

Many software applications are either totally menu driven, or totally command driven ("enter a
command-see the result"). Base SAS software is neither totally menu driven or totally
command driven. With Base SAS software, you use statements to write a series of instructions
called a SAS program.

MODULE 4: DATA STEP STATEMENTS

= Assignment Statement

= Identify Arithmetic Operators

= Interpret Messages in the SAS Log

= SAS Functions—SUM, MEAN, SUBSTR, TRIM, MDY, MONTH, DAY, YEAR
< RETAIN and SUM Statements

MODULE 5: CONDITIONAL STATEMENTS

« |[F-THEN Statement

= Comparison, Logical and IN Operators
e |[F-THEN/ELSE statements

= Subsetting IF Statement

e |IF-THEN/DELETE Statement

= OUTPUT Statement

= L ENGTH Statement

MODULE 6: MANAGING SAS DATA SETS

« PROC SORT

« SET statement
 MERGE statement
= \WWHERE statement

e DROP = and KEEP = SAS Data Set Options






MODULE 4: DATA STEP STATEMENTS

= Assignment Statement

= Identify Arithmetic Operators

= Interpret Messages in the SAS Log

= SAS Functions—SUM, MEAN, SUBSTR, TRIM, MDY, MONTH, DAY,YEAR

e RETAIN and SUM Statements






1. WRITE ASSIGNMENT STATEMENTS

Purpose: Use assignment statements in the DATA step to create new variables and
to modify existing variables. Assignment statements evaluate an expression
and store the result as a variable.

General Form:  variable = expression ;

I l
(A) (B)

(A) variable names a new or existing variable

(B) expression may consist of one or more variable names, constants, function names, and
arithmetic operators

An assignment statement is one of the few statements in SAS that does not start with a
keyword.
Sample SAS statments:

Notice that these samples contain numeric, character, and date constants.

(1) WTKILO = WEIGHT * .45 ;
(2) ID = SUBSTR(ID, 2) ;

(3) TOTAL_COST = (PPRICE * PNUM) + (CPRICE * CNUM) ;
(4) REMARKS = ‘OK’ ;

(5) SUM = SUM + 1 ;

(6) Date_of _birth = ‘*04MAY67'D ; /*a SAS date constant */



Sample: Using an Assignment Statement

DATA INCOME ;
INPUT RENT_INCOME EXPENSES ;
TOTAL_INCOME =RENT_INCOME - EXPENSES ;

/*other SAS programming statements*/

DATALINES;
6350 1200
7950 1300

PROC PRINT;

TITLE 'Using An Assignment Statement’ ;
RUN,;
Sample Output:

Usi ng An Assi gnnent Statenent

OBS  RENT_| NCOVE EXPENSES TOTAL_| NCOVE
1 6350 1200 5150
2 7950 1300 6650



What happens during SAS’s “execute” phase of this particular assignment statement

TOTAL_INCOME = RENT_INCOME - EXPENSES ;

STEP 1: Each variable is initialized to missing at the start of the “execute” phase

PDV

N_ _ERROR_ RENT_INCOME EXPENSES TOTAL_INCOME

STEP 2: INPUT statement reads the first record.

PDV
N _ERROR_ RENT_INCOME EXPENSES TOTAL_INCOME
1 0 6350 1200

STEP 3: SAS evaluates TOTAL_INCOME = RENT_INCOME - EXPENSES.

PDV
N_ _ERROR_ RENT_INCOME  EXPENSES TOTAL_INCOME
1 0 6350 1200 5150

STEP 4. By default, the information in the PDV is written as an observation to the SAS
data set INCOME at the end of the DATA step. The same cycle is repeated for the
next record.



2. IDENTIFY ARITHMETIC OPERATORS

Arithmetic Symbol

**

Operation

addition
subtraction
multiplication
division

exponentiation

Sample
ASSIGNMENT statements

SUM=X+Y

DIFFERENCE =X -Y;
PRODUCT =X*6;

RATE = DISTANCE/TIME ;

AREA = SIDE ** 2 ;



EXERCISE 1

Which of the following is an invalid SAS assignment statement? (circle)

(1) X=A*B;
(2) Z2=15/0; (a SAS program using division by 0 will be discussed as we move along)

Note: SAS does compile and execute the SAS statement. However, the SAS Log note
reads...”NOTE: Division by Zero detected at line (humber) and column (number).

a second SAS Log note reads...
NOTE: Mathematical operations could not be performed in the following place: The
results of the operations have been set to missing values.
(3) 3*(A-B);
(4) DAY_WAGE = (HOUR/8) * WAGERATE;
(5) X SQUARE = X ** 2;
(6) TOTAL=TOTAL +1,
(7) PERCENT = PERCENT * 100;

(8) RANGE = HIGHTEMP - LOWTEMP;

(9) D = A/B * 100



2.1 Missing values in an assignment statement

Should the value for a variable in an expression be missing, the resulting value will also be
missing.

Sample Program:

DATA MISSING ;
INPUT A B ;
TOTAL= A + B;

DATALINES;

2 .

35

PROC PRINT ;
TITLE 'Effect of missing values on an ASSIGNMENT statement' ;
RUN;

Sample SAS Log:

1 DATA M SSI NG ;

2 INPUT A B ;

3 TOTAL = A + B ;
4 DATALI NES;

NOTE: M ssing values were generated as a result of performng
an operation on mssing val ues.
Each place is given by: (Nunber of times) at (Line):
(Colum)1l at 3:13
NOTE: The data set WORK M SSI NG has 2 observations and 3 vari abl es.
NOTE: The DATA statenent used

cpu time 0. 06 CPU seconds.
7 ;
8 PROC PRI NT ;
9 TITLE ' Effect m ssing val ues on an ASSI GNMENT st at enent ' ;

NOTE: The PROCEDURE PRI NT printed page 1.
NOTE: The PROCEDURE PRI NT used:
cpu time 0. 02 CPU seconds.
Sample Output:
Ef fect m ssing val ues on an ASSI GNMENT st at enent

GBS A B TOTAL



3. INTERPRET MESSAGES IN THE SAS LOG

3.1 Variable is Declared Character and Used as Numeric
Sample Program:

DATA DEFCHAR;
INPUT CODE $3. ;
CODE=CODE+1;

DATALINES;

624

239

PROC PRINT ;
RUN;

Sample SAS Log:

DATA DEFCHAR ;
| NPUT CCDE $3. ;
CODE = CODE + 1
DATALI NES;

~ArWNPEF

NOTE: Character val ues have been converted to nuneric val ues at
t he pl aces gi ven by:
(Nunmber of tines) at (Line): (Colum).
2 at 3:11
NOTE: Nuneric val ues have been converted to character val ues at
t he pl aces given by: (Nunber of tines)
at (Line):(Colum). 2 at 3:16
NOTE: The data set WORK. DEFCHAR has 2 observations and 1 vari abl es.
NOTE: The DATA st atenent used:
cpu time 0. 06 CPU seconds.

8 PROC PRI NT ;

NOTE: The PROCEDURE PRI NT printed page 1.
NOTE: The PROCEDURE PRI NT used:

cpu time 0. 02 CPU seconds.

Sample Output:
The SAS System

GBS CCDE

1 625
2 240



3.2 Division by Zero
Sample Program:

DATA DIVZERO;
INPUT X Y;
Z=X/Y,;

DATALINES;

41

60

PROC PRINT:
RUN:

Sample SAS Log:

1 DATA DI VZERO ;
2 I NPUT X Y ;
3 Z=XY

4 DATALI NES;

ERROR. Division by zero detected at line 3 colum 9.

RULE: e L e e L e e - Lt

6 6 0

X=6 Y=0 Z=. ERROR =1 N =2

NOTE: Mat henmati cal operations could not be performed at the
follow ng places. The results of the operations have been
set to m ssing val ues.
Each place is given by:
(Nunber of tines) at (Line):(Colum).
1 at 3:9

NOTE: The data set WORK DI VZERO has 2 observations and 3
vari abl es.

NOTE: The DATA statenent used 0.06 CPU seconds.

8 PROC PRI NT ;

NOTE: The PROCEDURE PRI NT printed page 1.
NOTE: The PROCEDURE PRI NT used

cpu time 0. 02 CPU seconds.
ERROR. Errors printed on page 1

Sample Output:

GBS X Y V4
1 4 1 4
2 6 0 .



EXERCISE 2

(1) DATA REPORT;

INPUT GRANT TOTAL1 TOTALZ;
TOTAL=TOTAL1+ TOTALZ2;

[*later we will discuss usage of both the RETAIN and Assignment statements*/

DATALINES;
65 40 53
86 70 .
PROC PRINT;
RUN;
Sample SAS Log:
1 DATA REPCRT;
2 | NPUT GRANT TOTAL1 TOTALZ;
3 TOTAL = TOTAL1 + TOTALZ;
4 DATALI NES;
NOTE: M ssing val ues were generated as a result of performng
an operation on m ssing val ues.
Each place is given by:
(Nunmber of tines) at (Line):(Colum).
1 at 3:18
NOTE: The data set WORK REPORT has 2 observations and 4
vari abl es.
NOTE: The DATA statenent used
cpu tinme 0. 06 seconds.
7 ;
8 PROC PRI NT;
NOTE: The PROCEDURE PRI NT printed page 1.
NOTE: The PROCEDURE PRI NT used 0.02 CPU seconds.
NOTE: The SAS session used:

cpu tinme 0. 24 seconds.

Examine the following SAS output. Why is SAS generating missing values?

GBS

The SAS System
GRANT TOTAL1 TOTAL2 TOTAL

65 40 53 93
86 70 : :



(2) DATA AVERAGE;
INPUT TIMEL TIME2 TIME3 N :
AVG = (TIMEL + TIME2 + TIME3)/N;

DATALINES;
145 18 233 3
13.0 13.2 15 3
18.4 21 255 0
PROC PRINT;
RUN;
What is causing an error message in the following SAS Log ?
1 DATA AVERAGE;
2 | NPUT TIMEL TIME2 TIME3 N ;
3 AVG=( TI MEL+TI ME2+TI ME3) / N ;
4 DATALI NES;
ERROR Division by zero detected at |line 3 colum 26.
RULE: R e e e i S e
7 18.4 21 25.5 0

TI ME1=18. 4 TI ME2=21 TIME3=25.5 N=0 AVG=. _ERROR =1 N =3

NOTE: Mat hemati cal operations could not be performed at the
follow ng places. The results of the operations have been
set to m ssing val ues.
Each pl ace is given by:
(Nunber of tines) at (Line):(Colum).

1 at 3:26

NOTE: The data set WORK. AVERAGE has 3 observations and 5
vari abl es.

NOTE: The DATA st atenent used:
cpu time 0. 06 seconds.

8 ;

9 PROC PRI NT;

NOTE: The PROCEDURE PRI NT printed page 1.
NOTE: The PROCEDURE PRI NT used:

cpu time 0. 03 seconds.

ERROR Errors printed on page 1.

The SAS System

GBS TI ME1 TI ME2 TI ME3 N AVG
1 14. 5 18.0 23.3 3 18.6
2 13.0 13.2 15.0 3 13. 7
3 18. 4 21.0 25.5 0 .

10



4. SAS Functions

Purpose: The SAS System contains functions which perform specific
calculations. Functions operate across variables within the observations in a SAS

data set.
General Form: variable = functionname (argumentl, ..., argumentn) ;
(/IA) (EI3) (CI)
(A) variable result of the function
(B) functionname keyword for a particular function
(C) argumentn any SAS expression

11



4.1 SUM Function

Purpose: The SUM function adds its non-missing arguments.

General Form: SUM(argumentl,. . ., argumentn) ;

Sample: To illustrate the difference between the usage of the SUM function versus the
addition operator in the ASSIGNMENT statement when missing values are present.

DATA Sample;
INPUT X1 X2 X3;

TOTALL = SUM(X1, X2,X3) ;
/* the expression SUM(X1, X2, X3) is equivalent to the expression SUM(OF X1-X3) */
/* variables which start with a common prefix and end with consecutive numbers can be
part of a numbered range list. The numbers can start and end anywhere as long as the
number sequence between is complete. */
TOTAL2 = X1+ X2 + X3;
DATALINES;

15 10
2 . 4

PROC PRINT ;

Title ‘Notice the difference between the values TOTAL1 and TOTALZ2’;
RUN;
Sample 2 - SAS Output:

Notice the difference between the values TOTAL1 and TOTAL2

GBS X1 X2 X3 TOTAL1 TOTAL2
1 1 5 10 16 16
2 2 : 4 6 .

12



4.2 INPUT Function - Explicit Character-to-Numeric Conversion

The INPUT function converts character data values to numeric values.
General Form: INPUT (source, informat) ;
e source indicates the character variable, constant, or expression to be converted to a

numeric value

= anumeric informat must be specified

13



Suppose: The variable PayRate is stored in a SAS data set as a character variable. You are
asked to determine the salary. Multiple variable PayRate by the variable Hours.

Given: PayRateHours
10 88
8 200

Sample Program:

Data Convert_Char_to_Numeric ;
INPUT PayRate $ Hours ;
New_ PayRate = INPUT(PayRate, 2.) ;
Salary = New_PayRate * Hours;

DATALINES;

10 88

8 200

PROC PRINT,;
RUN;

[*Alternatively, you may combine into one Assignment statement to accomplish the task*/

Data Convert_Char_to_Numeric ;
INPUT PayRate $ Hours ;
Salary = INPUT(PayRate, 2.) * Hours;

DATALINES;
10 88
8 200

14



4.3 PUT Function - Explicit Numeric-to-Character Conversion

The PUT function converts numeric data values to character values.
General Form: PUT(source, format) ;

= source indicates the numeric variable, constant, or expression to be converted to a character
value

= a format matching the data type of the source

15



Suppose: You were asked to create a new character variable Assignment. This new variable
would be the result of concatenating the values of the variables

Site and Department.

Given: Department

PURH
BK

Sample Program:

Data Convert_ Numeric_to_Character
INPUT Department

Newsite =PUT(Site, 2.) ;

Site

/*this statments converts the numeric variable Site to a character variable Newsite */

Assignment = Newsite || ‘/° || Department ;

DATALINES;
PURH 57
BK 34

PROC PRINT,;
RUN;

Sample Output:

Obs Department
1 PURH
2 BK

16

Site Newsite
57 57
34 34

Assignment

57/PURH
34/BK



[*Alternatively, you may combine into one Assignment statement to accomplish the task*/

Data Convert Numeric_to_Character ;
INPUT Department $ Site ;
Assignment = PUT (Site, 2.) || */ | | Department ;
DATALINES;

PURH 57
BK 34

PROC PRINT;

RUN;

Sample Output 2:

Obs Department Site Assignment

1 PURH 57 57/PURH
2 BK 34 34/BK



4.4 MEAN Function

Purpose: The MEAN function averages its non-missing arguments.
General Form: MEAN(argumentl,. . .,argumentn) ;

You may use the numbered range lists in an abbrevated form... MEAN(OF varlist) ;

Sample1l: M =MEAN(2,6,7);

Sample 2: Illustrating the difference between usage of the MEAN function in a SAS
expression and the usage of addition/division operators in a SAS expression when
missing values occur.

DATA AVG;
INPUT X1 X2 X3 X4;
AVG1 = MEAN(OF X1-X4) ; /* or AVG1=MEAN(X1, X2, X3, X4); */
/* The expression AVG1 = MEAN(OF X1-X4) is equivalent to AVG1= MEAN(X1, X2, X3, X4) */
AVG2 = (X1 + X2+ X3+ X4)/4 ;

DATALINES;
2 6 7 .

PROC PRINT ;
Title ‘Notice the difference between the values AVG1 and AVG?2’ ;
Title2 *Usage of the MEAN function in a SAS expression versus usage of the’ ;
Title3 * + or - operators in a SAS expression when missing values occur. ’ ;
RUN;

Sample 2 - SAS Output:
Notice the difference between the values AVG1 and AVG2
Usage of the MEAN function in a SAS expression versus usage of the
+ or - operators in a SAS expression when missing values occur.

GBS X1 X2 X3 X4 AVGL AVER
1 2 6 7 . 5

18



4.5 TRIM Function is a character-handling function

Purpose: The TRIM function removes trailing blanks from a character string.
TRIM function is handy for making concatenated strings look more
presentable.

General Form: TRIM(string) ;
The TRIM function is often used in conjunction with the concatenation operator (] |).
The concatenation operator joins character strings and has the general form:

stringl | | string2

where stringl and string2 are character variables, constants, or expressions.

Note 1:

The concatenation operator (] |) enables you to append character variables and/or
character constants to each other.

Trailing blanks are not trimmed from the operands.

For instance, the value “East” stored in a variable with a length of 10 will contribute six blanks
to the concatenated string. The TRIM function eliminates this unwanted “white space.”

Note 2:

On the keyboard the | | symbol is the uppercase of the back-slash.

19



Sample Program: TRIM function

DATA NAMES ;
INPUT FNAME $ LNAME §$ ;
/* Used several Assignment statements below: */
_PART1 = FNAME || LNAME ;
_PART2 = TRIM(FNAME) || LNAME ;

FULL_ NAME = TRIM(FNAME) || ’ ‘ || LNAME ;

DATALINES;
HARRY  THOVAS

PROC PRINT ;
RUN;

Sample Output:

OBS FNAME LNAME _PART1 _PART2
1 HARRY THOVAS HARRY  THOVAS HARRYTHOVAS

20

FULL_NAME
HARRY THOVAS



/* Alternatively, you may combine into one Assignment statement to accomplish the task */

DATA NAMES;
INPUT FNAME $ LNAME §$ ;

FULL_NAME = TRIM(FFNAME || “‘ || LNAME ;

DATALINES;
HARRY  THOVAS

PROC PRINT ;
RUN;

Sample Output:

OBS FNAME LNAVE FULL_NAME
1 HARRY THOVAS HARRY THOVAS

21



4.6 SUBSTR Function is a character-handling function

Purpose The SUBSTR function extracts part or all of a character string.

General Form: SUBSTR(string, start, length) ;
I I I
A B (©

(A) string string and character string are used interchangeably and refer to any
of character variables, constants, or expressions.

(B) start extraction begins in the specified ‘start’ position from the left and
continues to the right for the specified ‘length’

(C) length the number of characters to extract. If length is omitted or exceeds string’s
length, the remainder of the character string is extracted.

22



Sample program 1 - SUBSTR function:

DATA Substring_Program_1 ;
INPUT FirstName $ 1-9 @13 Middle Name $9. ;
Middle_Initial = SUBSTR(Middle_Name,1,1) ;

/* in this example extraction of a string starts with the 1st character in the field and continues for

1 position*/
DATALINES;
Elizabeth Marie
Richard Lee
Brian Thomas
PROC PRINT ;

RUN;

Sample output:

First Middle_ Middle_
Obs Name Name Initial
1 Elizabeth Marie M
2 Richard Lee L
3 Brian Thomas T



Sample program 2 - SUBSTR function:
DATA Substring_Program_2 ;
INPUT Variable. 1 Unknown ID $5. ;
ID_variable = SUBSTR(Unknown_ID,3,3) ;
/*extracting a character string begins at the 3rd character in the original string

and from that point extracts the following 3 positions */

DATALINES;
10 SA052
20 MAO11

PROC PRINT ;
RUN;

Sample output:

BS Variable 1  Unknown_ID | D variabl e
1 10 SA052 052
2 20 MAO11 011

24



4.7 Date Functions

Sometimes dates are supplied in a form not amenable to any of the SAS date informats.
(You studied SAS date informats in the course SAS Programming Fundamentals I.

Certain situations require date calculations. These date creation activities are often handled by

the SAS date functions.
45.1 MDY Function

Purpose: The MDY function creates a SAS date from separate month, day, and year
arguments.

General Form: MDY (month,day,year) ;

SAS numeric variables or constants represent month, day, and year, respectively.
A missing or out-of-range argument creates a missing value.

Sample:

DATA TEST ;
INPUT ID 1-5 WMNTH 7-8 DY 10-11 YR 1-2 ;
NEWDATE = MDY( MNTH, DY, YR) ;

DATALI NES;

91215 12 24

PRCC PRI NT ;
/* Without a FORMAT statement, SAS writes 11680. This integer 11680 represents

the total number of days between Dec. 24, 1991 and Jan. 1, 1960 */
RUN,

Sample Output:
oBS I D IMNTH DY YR NEWDATE
1 91215 12 24 91 11680

25



4.7.2 MONTH, DAY, YEAR Functions

Using SAS functions to extract month, day, and year from a SAS date value.

FUNCTION PURPOSE GENERAL FORM

MONTH Returns the numeric value of the MONTH(SASdate)
month (1-12)

DAY Returns the day of the month DAY (SASdate)

YEAR Returns the year in 4 digits YEAR(SASdate)

26



Sample - YEAR, MONTH, and DAY functions program

DATA DOB ;
DOB = ‘07JAN1964'D ; /* this is a SAS date constant */
YR = YEAR(DOB) ;
MON = MONTH(DOB) ;
DAY = DAY(DOB) ;

PROC PRINT ;
RUN;

Sample Output:

GBS DOB YR MON DAY
1 1467 1964 1 7



5. RETAIN, ASSIGNMENT and SUM STATEMENTS
5.1 RETAIN Statement

Purpose: The RETAIN statement causes a variable whose value is assigned by an
INPUT or ASSIGNMENT statement to retain its value from one iteration of
the DATA step to the next. Without a RETAIN statement, the SAS System
automatically sets these variables to missing before each iteration of the

DATA step.
General Form: RETAIN variable [initial-value];
(A)
(A) initial-value variable(s) listed before an initial-value will start the first iteration

of the Data step with that value

The RETAIN statement can appear anywhere in the DATA step.

The RETAIN statement may be desirable in some situations. For instance, you

may want to compute a running total for one or more variables. But by default SAS
automatically resets all values to missing at each iteration of the DATA step. In such a case
you want the value for the running total to be retained at the start of each iteration.

Basically...
1. To provide initial value of your choice for the variable(s)

2. To prevents resetting value to missing for each iteration of the Data Step

28



Sample 1: Using the RETAIN statement and the ASSIGNMENT statement

DATA TOTCOST;
RETAIN TOTALO; /* TOTALI s initializedto 0 */

INPUT COST ;
TOTAL=TOTAL+COST; /* TOTAL keeps a ‘running sum’ */
DATALINES;
1000
1200
PDV Before Reading the First Data Line PDV After Reading the First Data Line
TOTAL COST TOTAL COST
0 1000 1000

PDV Before Reading the 2nd Data Line

PDV After Reading the 2nd Data Line

TOTAL  COST
TOTAL  COST
1000
2200 1200

Before the first execution of the DATA step, the variable TOTAL is initialized to 0. Then for
all subsequent executions, the RETAIN statement signals to SAS that the variable TOTAL is
not initialized to missing. Therefore, you can accumulate totals using the RETAIN statement
and the assignment statement as long as the variable COST is not missing. Should COST be
a missing value then the value for TOTAL will also be missing.

29



Sample 2: Using the RETAIN statement and the ASSIGNMENT statement

DATA DAYS;

RETAIN TODAY ‘28FEB92’D: /*the internal value for TODAY is retained*/
/* ‘28FEB92’D is a date constant */

INPUT DATE MMDDYYE6.; /* for each iteration of the DATA step*/

Number_Days = TODAY - DATE ;

DATALINES;
010192
021586

PROC PRINT ;
RUN;

Sample Output:

OBS TODAY DATE Number_Days
1 11746 11688 58
2 11746 9542 2204

30



5.2 SUM Statement

Purpose: The Sum statement is a special SAS statement which also retains
the variable’s value from the previous iteration of the DATA step. SAS
recognizes the first variable in the SUM statement as a retained numeric
variable. Retention is implied. But you use it for the special cases where you
simply want to cumulatively add the value of an expression to a variable.

General Form: variable + expression ;

I I
(A) (B)

(A) variable This variable keeps the ‘running’ sum. By default this numeric variable is
given an initial value of zero.

(B) expression The expression is evaluated and the result is added to the value
of the variable.

Sample program:

DATA ADDIT;
INPUT COST ;
TOTAL + COST ;

/* by definition TOTAL represents the variable and COST represents the expression*/

DATALINES;
1000
1200

1500

PROC PRINT ;
RUN;

Sample output:

GBS CasT TOTAL

1 1000 1000
2 1200 2200
3 : 2200
4 1500 3700

31



EXERCISE 3 (computer-assisted )

1. Write a DATA step that reads the following data lines.
BOB 34 31 22
JAN 23 22 18
MATT 12 43 25
MARY 15 51 40

(1a) Use the following INPUT statement in the DATA step.
INPUT NAME $ GR1 GR2 GR3;

(1b) Create a new variable TOTGR which is the sum of GR1, GR2 times 5, and GR3.

(1c) Create another variable AVGGR which is the average of GR1, GR2 times 5,
and GR3.

2. Use PROC PRINT to list the observations and variables created in the
DATA step(above).

3. Write another DATA step that reads company names and phone numbers.

DATA PHONES;
INPUT COMPANY $ 1-5 PHONE_NUMBER $ 8-14;

/*your SAS statements and answers to questions (3a) and (3b) will be
entered here, that is, immediately after the INPUT statement and before
the DATALINES statement*/

DATALI NES;

C & P 4651500
PEPCO 5401800
WSSC 8451000

(3a) Using the SUBSTR function, write ASSIGNMENT statements, and create two new

variables.

The variable EXCHANGE will represent the first three digits of PHONE_NUMBER

and the variable EXTENSION will represent the last four digits of

PHONE_NUMBER

NOTE! You determine the the values for the ‘start’ and the ‘length’ values in the
SUBSTR function by simply counting the number of digits or characters in a
specified field.

(3b) Create a new variable NEWPHONE_NUMBER (...insert a hyphen between the
three digit exchange and the four digit extension).

(4) Use PROC PRINT to display the observations and variables in the data set PHONES
(5) Check the SAS log and the SAS output. Is this the desired SAS output ?

32



EXERCISE 4 (computer-assisted)

1. Write a DATA step that reads the following data lines. Each data line consists of
a patient’s identification number, followed by the month, day and year that these
patients were admitted to a hospital.

1069 12 10 81
1200 5 8 82
1180 6 14 82

(a) Use the following INPUT statement in the DATA step
INPUT PATID $ ADMISSION_MONTH ADMISSION_DAY ADMISSION_YEAR ;

(b) Write an ASSIGNMENT statment to create a new variable ADMISSION_DATE

2. Use PROC PRINT to display the observations and variables in the data set.
You may also include this Format statement to display a “real” date
Format admission_date MMDDYYS8. ;

3. Write another DATA step and read the variables STUDENT, START_DATE, and
GRAD_DATE.

START_DATE represents the date a student started degree
GRAD_DATE represents the date a student completed degree

DATA CLASS;
| NPUT STUDENT $
@ START_DATE MVDDYYS.
@4 GRAD DATE MVDDYYS. ;

[*count!...in this exanple the starting positions for the
date(s) are in col. 6 and 14 */

DATALI NES;

1180 9/14/87 6/5/91
1069 9/8/87 5/20/91
1200 8/24/82 5/ 29/ 86

() Create a new variable Number__Years which represents the number of years the
student attended school.

4. Use PROC PRINT to display the observations and variables in this data set.

PROC PRINT ;
FORMAT START DATE GRAD DATE MMDDYYS. ;
/* Format statement associates the MMDDYY8. date format with the

variables START_DATE and GRAD _DATE.*/
RUN;

33



EXERCISE 5 (computer-assisted)

(1) Write a DATA step which creates a SAS data set GRANTS

DATA GRANTS ;
INPUT [INSTITUT $ @ AMOUNT COWAY. ;
DATALI NES;
NI CHD 120, 000
NI Al D 220, 000
NCI 180, 000

la) Write a RETAIN statement which initializes a new variable TOTALL.

1b) Write an ASSIGNMENT statement.
Accumulate totals(that is, ‘a running’ sum) for the variable AMOUNT, and assign the
totals to the new variable TOTALL.

1c) Write an SUM statement.
Accumulate totals(that is, ‘a running’ sum) for the variable AMOUNT, and allow a new
variable, TOTALZ, to retain the ‘running’ sum or totals for the variable AMOUNT.

(2) Use PROC PRINT to list the observations and variables in this data set.

PROC PRINT ;
FORMAT AMOUNT TOTAL1 TOTAL2 COMMA?TY. ;
/* Format statement associates the COMMAY7. format with the variables
AMOUNT, TOTALL1 and TOTAL2 */
RUN;

34



MODULE 5: CONDITIONAL STATEMENTS

= |[F-THEN Statement

= Comparison, Logical and IN Operators
= IF-THEN/ELSE statements

= Subsetting IF Statement

= |F-THEN/DELETE Statement

« OUTPUT Statement






6. IFF-THEN STATEMENT

Purpose: Used in the DATA step to conditionally perform statements.

General Form: IF condition THEN statement;

I |
(A) (B)
(A) condition an expression that SAS evaluates as true or false
(B) statement an executable statement

If the condition is true then SAS executes the statement.
If the condition is false SAS ignores the statement.
Samples:

(1) IFSEX=‘F THEN COUNT + 1;

(2) IF AGE =10 THEN GROUP="A’;

(3) IFSEX =" * THEN MISSING + 1,

(4)IF AGE=. THEN AGE=0;

31



7. COMPARISON, LOGICAL AND IN OPERATORS

7.1 Comparison Operators

KEYWORD SYMBOL MEANING

EQ = equal to

LT < less than

GT > greater than

NE N= not equal to

LE <= less than or equal to

GE >= greater than or equal to
Samples:

(1) IF AGE >= 50 THEN AGE =39;
(2) IF SEX EQ ‘M’ THEN MALE =1,

(3) IF TEMP LT 32 THEN WEATHER ="COLD’;

32



7.2 Logical Operators

KEYWORD SYMBOL MEANING

AND & If both expressions linked by AND are true, then the
result is true; otherwise, the result is false.

expressionl expression2 result

T T T
T F F
F T F
F F F
OR | If either of the expressions linked by OR is true
then the result is true; othewise, the result is
false.

expressionl expression2 result

T T T
T F T
F T T
F F F
NOT~» The result of putting NOT in front of an expression whose value is
false is true. The result is true if the value of the expression is

false.
expression  result

T F
F T

33



Samples: Using logical operators in conditional statements

(1) IF STATE='NC’ OR STATE='SC’ OR STATE =‘VA’ THEN REGION ="E’;

(2) IF STATE =*NC’ AND CITY = ‘RALEIGH’ THEN STCODE = 3;

(3) IF SCORE>=80 AND SCORE <90 THEN GRADE ='B’;

IS equivalent to

IF 80 <=SCORE <90 THEN GRADE = ‘B’

(4)IF AGE>30 AND MARITAL =‘M’ THEN CODE =‘5’;

(5) IF SEXEQ ‘F" & AGELT 14 THEN GROUP =2,

34



7.3 IN Operator

Purpose: The IN operator is used to determine whether a variable’s value is among a
list of values.

General Form: IN (valuel, value2, ..., valuen)

Samples:

(1) IF FIPSCODE 1IN (6,16,32,41,53) THEN REGION = ‘SE’;

(2) IF STATE IN (*NC’’SC’’VA’) THEN REGION = ‘E’;

35



8. IFF-THEN/ELSE STATEMENT

Purpose: Used in the DATA step to conditionally perform statements.

General Form: IF condition THEN statementl;
ELSE IF condition THEN statement?2;
ELSE IF condition THEN statement3;
ELSE statement4;

If a condition is true, SAS executes statementl. If a condition is false, SAS ignores
statementl. SAS continues this same logical process for the other IF-THEN/ELSE series.

Notice the final ELSE statement(above).

Sometimes the last ELSE statement in a series is a little different, containing just a
statement, with no IF or THEN. An ELSE of this kind becomes a default which is
automatically executed for all observations failing to satisfy any of the previous IF-
THEN/ELSE statements. You can only have one of these statements, and it must be the
last in the IF-THENZ/ELSE series.

Samples:

(1) IF 70 <=TEST <=100 THEN SCORE = ‘PASS’;
ELSE SCORE = ‘FAIL’;

One of the most common uses of IF-THEN or IF-THEN/ELSE statements is for
grouping observations. Perhaps a variable has too many different values and you want
to run an analysis based on specific groups of interest.

(2) IF 0 <= AGE <=20 THEN AGEGRP =1,
ELSE IF 20 < AGE <=40 THEN AGEGRP = 2;
ELSE IF 40 < AGE <=60 THEN AGEGRP =3;
ELSE IF AGE >60 THEN AGEGRP =4;
ELSE AGEGRP =0;

Advantages of the IF-THEN/ELSE over a simple series of IF-THEN:
1) It is more efficient, using less computer time; once an observation satisfies a
condition, SAS skips the rest of the series.

2) ELSE logic ensures that your groups are mutually exclusive so you don’t accidentally
have an observation fitting into more than one group.

36



EXERCISE 6 (a written exercise)

(1) Suppose we have the data lines below:
FNAVE SEX AGE HT W

PAUL M 27 12 140
JENNNFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TON M 32 68 130

Write IF statements:

(a) assign a value of ‘NO’ to a new variable named ALLOWED if the age is at
least 31.

(b) change the first name TONI to TONY.

(c) assign a value of ‘A’ to a new variable GROUP if the first name is PAUL,
RENEE or MANUEL.

(d) create a new variable W according to the value of WT. If WT is between 10
and 130, set W to ‘130 OR LESS’; otherwise, set it to ‘OVER 130’.

(2) Rewrite any of the following IF statements if they are not valid:

(@ IF SEX EQ ‘M’ THEN CODE EQ 1,
(b) IF VEHID 1IN (1,3,4) THEN TRUCK +1;

(c) IF (STATE='ME’ AND CITY =‘PORTLAND’) AND
(STATE='NJ AND CITY = ‘TRENTON’) THEN COUNT + 1,

(d) IF MEAN (OF DRUG1-DRUGS5) > 45 THEN LEVEL=HIGH,;

37



9. SUBSETTING IF STATEMENT

Purpose:

General Form:

If the condition is true, SAS continues processing the following statements in the DATA

IF condition;

step for the current observation.

If the condition is false, then no further statements are processed for that observation;
that observation is not added to the SAS data set being created; and SAS moves on to
the next observation. Therefore, control is returned to the beginning of the DATA

step.

You can think of the subsetting IF as a kind of on-off switch. If the condition is true,
then the switch is on and the observation is processed. If the condition is false, then that

observation is turned off

Sample:

DATA MALE;

INPUT FNAME $ SEX$ AGE HT WT;

IF SEX = ‘M’;
DATALINES;
PAUL M2772 140
JENNIFER F 28 64 135
RENEE F 3554 128
MANUEL M 3560 125
TONY M 3268 130

PROC PRINT,;
RUN;

Sample Output:

WN -

38

FNAVE

PAUL
MANUEL
TONY

To select a subset of observations.

SEX

AGE

27
35
32

72
60
68

wr

140
125
130



10. IF-THEN/DELETE STATEMENT

Purpose:

General Form:

(A) DELETE

I
(A)

To select a subset of observations.

IF condition THEN DELETE;

stops processing the current observation when the condition is true.

The observation is not written to the SAS data set. Control is returned
to the beginning of the DATA step.

While the subsetting IF statement tells SAS which observations to include, the DELETE
statement tells SAS which observation to exclude.

Generally, you use the DELETE statement when it is easier to specify a condition for
excluding observations. (Easier...meaning you would have to do a lot less typing to

specify the condition)

Sample 1. Using the IFF-THEN/DELETE Statement

DATA MALES;

INPUT FNAME $ SEX$ AGE HT WT;
IF SEX='F THEN DELETE;

DATALINES;

PAUL M2772 140
JENNIFER F 28 64 135
RENEE F 3554 128
MANUEL M 3560 125
TONY M 3268 130

PROC PRINT,;
RUN;

Sample Output 1:

WN -

FNAVE

PAUL
MANUEL
TONY

SEX

AGE

27
35
32

72
68

140
125
130

39



Sample 2. Using the IF-THEN/DELETE Statement

DATA PRODUCT,
INPUT DEPT $ UNITS COST ;
IF UNITS<=0 OR COST <=0 THEN DELETE;
UNITCOST = COST/UNITS;

DATALINES;

CCB 10 525.00

LSM 50 -6.00

LAS 5 100.00

PCB 0 3.00

OD 115.00

PROC PRINT,;
RUN;

Sample Output 2:

GBS DEPT UNTS COST  UNI TCOST

1 CCB 10 525 52.5
2 LAS 5 100 20.0
3 a 1 15 15.0

40



11. OUTPUT STATEMENT

Purpose: When an OUTPUT statement is used in a DATA step, there is no automatic

output at the end of the DATA step. Rather, the OUTPUT statement

controls when the observations are written to the output SAS data set.
After an OUTPUT statement, control does not return to the start of the
DATA step; SAS continues processing any other statements in the step.

General Form; OUTPUT sasdsname;

I
(A)

(A) sasdsname SAS data set(s) must be named in the DATA statement.

Sample 1: Using the OUTPUT statement to write to multiple SAS data sets

DATA FEMALES MALES ;
INPUT FNAME $ SEX $ AGE HT WT,;
IF SEX=‘M’" THEN OUTPUT MALES;
ELSE IF SEX=‘F THEN OUTPUT FEMALES;
DATALINES;
PAUL M 27 72 140
JENNIFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130

PROC PRINT DATA=FEMALES;
TITLE ‘FEMALES’;

PROC PRINT DATA=MALES;
TITLE ‘MALES’; RUN;

Sample Output 1:
FEMALES
GBS FNAIVE SEX AGE

1 JENNI FER F 28
2 RENEE F 35

MALES
OBS  FNAME SEX ACE

1 PAUL M 27
2 MANUEL M 35
3 TONY M 32

64
54

72
60
68

WI

135
128

140
125
130

41



Sample 2. OUTPUT statement to generate several observations from one

Given the following variables and datalines

IDNUM SCORE1 SCORE?2 SCORE3
21573148 82 91 78
13429576 91 94 88

We will use the OUTPUT statement to generate several observations from one

In this case no SAS data set is specified in the OUTPUT statement, therefore the
observation is written to the SAS data set named in the DATA statement.

DATA OUTPUTZ;
INPUT IDNUM $ SCOREL1 - SCORE3;
TEST =1,
SCORE = SCOREL1 ;
OUTPUT,
TEST =2,
SCORE = SCOREZ;
OUTPUT,
TEST =3;
SCORE = SCORES;
OUTPUT ;
DROP SCOREL1 - SCORES;
DATALINES;
21573148 82 91 78
13429576 91 94 88

PROC PRINT ;
RUN;

Sample Output 2:

42

GBS | DNUM TEST SCORE
1 21573148 1 82
2 21573148 2 91
3 21573148 3 78
4 13429576 1 91
5 13429576 2 94
6 13429576 3 88



12. LENGTH STATEMENT

Purpose: To define the number of bytes used to store values of variables in the SAS
data set.
General Form: LENGTH variable(s) [$] length... [DEFAULT=nN];

11 I
(A) (B (©)

(A) $ indicates the preceding variable or variables are character
variables

(B) Length In the Windows/Mac/Unix environments this constant represents a
range from 3 to 8 for numeric variables and 1 to 32,767 bytes for
character variables.

In the OS/390 environment this constant represents a range from 2 to
8 for numeric variables and 1 to 32,767 bytes for character variables

(©) n changes the default number of bytes used for storing the values of
newly created numeric variables from 8 (the default length) to the
value of n(n can range from 2 to 8 or 3 to 8, depending on the host
system)

The following table shows the largest integer represented for the corresponding Length in Bytes. Limits shown
in this table are for the Windows/Mac/Unix environments. Limits are different for the OS/390 environment.

Length in Bytes Largest Integer Represented Exponential notation
3 8,192 2 to the 13th power
4 2,097,152 2 to the 21st power
5 536,870,912 2 to the 29th power
6 137,438,953,472 2 to the 37th power
7 35,184,372,088,832 2 to the 45th power
8 9,007,199,254,740,992 2 to the 53rd power
Example:

If you know that a numeric variable always has values between 0 and 100, you can use a
length of 3 to store the number and save space on storage.

Note: You can safely use the LENGTH statement when the value for the variable are integers. For non-
integers (fractional values) it is highly recommended that you_do not use the LENGTH statement.
Advantages: (1) Save space on storage

(2) Saves time in reading and writing the data.

(3) Changes SAS defaults for storing the values

43



Sample 1.

The length of a character variable is determined by the value it takes the first time it
appears in the DATA step.

DATABYTES;
INPUT X ;
IF X=1 THEN A= 'NO'; /* the first time the variable A appears in the DATA step*/
ELSE A="YES' ;

DATALINES;

2

4

1

PROC PRINT ;
RUN;

Sample output 1:
OBS X A
1 2 YE
2 4 YE

3 1 NO

44



Sample 2:

To avoid the problem shown in Sample 1, use the LENGTH statement to give A a length of 3.

DATABYTES;
LENGTH A $ 3 ;
INPUT X ;
IFX=1THEN A ="NO';
ELSE A ="YES' ;

DATALINES;

2

4

1

PROC PRINT ;

PROC CONTENTS;
RUN;

Sample Output 2:

OBS A X

1 YES 2
2 YES 4
3 NO 1

Proc content output:

CONTENTS PROCEDURE

Data Set Name: WORK.BYTES

Member Type: DATA

Engine: V8

Created: 10:10 Monday, September 18, 2000
Last Modified: 10:10 Monday, September 18, 2000
Protection:

Data Set Type:

Label:

Observations:
Variables:

Indexes:

Observation Length:
Deleted Observations:
Compressed:

Sorted:

Or OMNW
[EEN

NO

45



Sample 3:

DATA DEFAULT ;
LENGTH NAME $ 10 DEFAULT =3;/* 3 bytes to store integer <=8,192 */
INPUT NAME $ SCORE ;

DATALINES;

JASON 174
ROSA 195
FRITZ 188

KATHERINE 199

PROC PRINT ;

PROC CONTENTS;
RUN;

The LENGTH statement sets the length of the character variable NAME to 10 and changes the
default number of bytes used for storing numeric variables from 3 to 8 bytes.

Sample Output 3:

0BS NAME SCORE
1 JASON 174
2 RCSA 195
3 FRI TZ 188
4 KATHERI NE 199

Proc Contents out put:

CONTENTS PROCEDURE

Data Set Nanme: WORK. DEFAULT Gbservati ons: 4
Menber Type: DATA Vari abl es: 2

Engi ne: V8 | ndexes: 0

Cr eat ed: 10: 10 Monday, Septenber 18, 2000 Observation Length: 13
Last Modified: 10:10 Monday, Septenber 18, 2000 Del eted (oservations: 0
Protection: Conpr essed: NO
Data Set Type: Sort ed: NO
Label :

----- Al phabetic List of Variables and Attributes-----

# Vari abl e Type Len Pos

46



EXERCISE 7 (computer-assisted exercise)

It is a good practice to write-in your SAS statements in the blank spaces provided before you
enter the SAS program in the computer.

Suppose we have the following data lines which correspond to
the variables FNAME, SEX, AGE, HT, and W

PAUL M 27 72 140
JENNNFER F 28 64 135
RENEE F 35 54 128
MANUEL M 35 60 125
TONY M 32 68 130

(1) Write a DATA step and create a SAS data set AGE that includes only those
individuals 30 years old or older.

(2) Write a DATA step and create a SAS data set MALES that includes only
males over 30.

(3) Write a third DATA step and create two SAS data sets called GROUP1 and
GROUP2.
GROUPL1 includes only females over 30
GROUP2 includes only males over 30.






MODULE 6: MANAGING SAS DATA SETS

< PROC SORT

= SET Statement

= MERGE Statement

< DROP =and KEEP = (SAS data set options)

< \WWHERE Statement






13. PROC SORT

Purpose: PROC SORT rearranges the observations in a SAS data set. PROC SORT
does not generate a printed output.

General Form: PROC SORT DATA =sasdsnamel OUT = sasdsname2;
BY variables ; | |
I (A) (B)
(C)
(A) sasdsnamel names the SAS data set to be sorted...if you do not specify the DATA=
option, then SAS will use the most recently created SAS data set
(B) sasdsname2 names the output SAS data set...if you do not specify the OUT=option,
then SAS will replace the original SAS data set with the newly sorted
version
(C) variables list any number of variables in the BY statement. By default, the

observations are sorted in ascending order of the BY variables. You
can sort the observations in descending order using the keyword
DESCENDING before each variable you want sorted in descending
order.

There are several terms used in BY processing:

by-variable variable in a BY statement
by-value value of a by-variable
by-group observations with the same by-values

47



Sample 1. PROC SORT with the OUT = option

PROC SORT DATA =ORIG OUT =SORTORIG;

BY GRADE :
SAS data set ORIG SAS data set SORTORIG
OBS GRADE NAME OBS GRADE NAME
1 A SUE 1 A SUE
2 C JANE 2 A MATT
3 B BILL 3 B BILL
4 A MATT 4 C JANE
5 D DAVE 5 D DAVE
Sample 2: PROC SORT without the OUT = option
PROC SORT DATA=0RIG;

BY GRADE ;
SAS data set ORIG SAS data set ORIG
BEFORE THE SORT AFTER THE SORT
OBS GRADE NAME OBS GRADE NAME
1 A SUE 1 A SUE
2 C JANE 2 A MATT
3 B BILL 3 B BILL
4 A MATT 4 C JANE
5 D DAVE 5 D DAVE

48



Sample 3: PROC SORT with 2 by-variables

PROC SORT DATA =ORIG;
BY GRADE NAME ;

SAS data set ORIG

BEFORE THE SORT

OBS GRADE NAME

1 A SUE

2 C JANE
3 B BILL

4 A MATT
5 D DAVE

SAS data set ORIG

AFTER THE SORT
OBS GRADE
1 A
2 A
3 B
4 C
5 D

NAME

MATT
SUE
BILL
JANE
DAVE

49



14. SET STATEMENT

Purpose: The SET statement instructs SAS to read observations from one or more
existing SAS data sets rather than from data lines.
This allows you to read a SAS data set so you can add new variables, create
a subset, or otherwise modify the SAS data set.

General Form: DATA new-sasdataset:
SET sasdsnamel sasdsname?2 . . . sasdsnamen ;

I
(A)

(A) sasdsnamen A SET statement can read any number of SAS data sets.
A new program data vector is defined that contains all of the variables found in the existing
SAS data sets plus any new variables created with other SAS statements. By default,

observations are read from the first data set, then the second, and so on through all the data
sets. The SET statement is executed once for each observation in the SAS data sets.

50



Sample:

DATA NEW
SETOLD;
RATIO = HT/WT ;

SAS data set OLD
FNAME SEX AGE
PAUL M 27
JENNIFER F 28
RENEE F 35
MANUEL M 35
TONY M 32

SAS data set NEW
FNAME SEX AGE
PAUL M 27
JENNIFER F 28
RENEE F 35
MANUEL M 35
TONY M 32

HT

72
64
54
60
68

HT

72
64
54
60
68

140
135
128
125
130

140
135
128
125
130

RATIO

0.514
0.474
0.422
0.480
0.523

51



14.1 Concatenating SAS Data Sets

Purpose: Observations from one data set are stacked with observations from the other data
set. This is useful when you want to combine SAS data sets with all or most of
the same variables but different observations.

General Form: DATA new-sasdataset;
SET sasdsnamel sasdsname?2 . . . sasdsnamen ;
Sample 1.

DATA COMMON;;
SET NWEST SWEST ;

SAS data set NWEST SAS data set SWEST

OBS STATE POP OBS STATE POP
1 WA 34 1 NM 11
2 OR 2.1 2 AZ 1.8

SAS data set COMMON

OBS STATE POP
1 WA 3.4
2 OR 2.1
3 NM 11
4 AZ 1.8

52



Sample 2: Concatenating

DATA UNCOMMON;;
SET OLD1 OLDZ;

SAS data set OLD1 SAS data set OLD2
OBS ID X Y Z OBS A B
1 1 1 9 2 1 2 2
2 2 1 3 6 2 3 5
3 3 1 4 8 3 2 9
4 2 3
SAS data set UNCOMMON

OBS ID X Y Z A B C

~NOoOUTRWN R

~NOoO U~ WN R
A
S wo
0 o N

NN W

WO UN

BTN

@)

ADNOIN
~NOo O1hb~



14.2 Interleaving SAS Data Sets

Purpose: Interleaving combines individual sorted SAS data sets into one sorted
data set.
If you have data sets that are already sorted by some common variable, then
simply stacking the SAS data sets may unsort the data sets. In such a case all you
need to do is use a BY statement with your SET statement.

General Form: DATA new-sasdataset;

SET sasdsnamel sasdsname?2 . ..sasdsnamen ;
BY variables ;

As the SET statement is executed, SAS checks the current observation in each data set and
determines which observation to process by examining the values of the BY variable(s).
Sample 1: Interleaving

DATA INTERLV1;
SET NWEST SWEST ;

BY STATE;

SAS data set NWEST SAS data set SWEST
OBS STATE POP OBS STATE POP
1 NM 1.1 1 AZ 1.8
2 WA 34 2 OR 2.1

SAS data set INTERLV1

OBS STATE POP
1 AZ 1.8
2 NM 11
3 OR 2.1
4 WA 3.4

54



Sample 2: Interleaving - without multiple By- values

DATA INVERLVZ;
SET DATA1 DATAZ;

BY ID;

SAS data set DATAL1 SAS data set DATA2
OBS ID TREAT1 OBS ID TREAT2
1 1 Al 1 3 Bl
2 2 A2 2 4 B2
3 5 A3 3 6 B3

SAS data set INTERLV?2

OBS ID TREAT1 TREAT?2

1 1 Al

2 2 A2 .

3 3 Bl
4 4 . B2
5 5 A3 .

6 6 B3

55



Sample 3: Interleaving with multiple ‘By-values’

DATA INVERLVS;
SET DATA1 DATAZ;
BY NUM ;

SAS data set DATAL1

OBS NUM TREAT1

1 1 Al
2 2 A2
3 2 A3
4 3 Ad

SAS data set INTERLV3

OBS NUM TREAT1

1 1 Al
2 2 A2
3 2 A3
4 2 .

5 3 Ad
6 3

7 3

56

SAS data set DATA2

OBS NUM TREAT2

1 2 Bl
2 3 B2
3 3 B3

TREAT?2

B1

B2
B3



15. MERGE STATEMENT

Purpose: The MERGE statement is used to join corresponding observations from
two or more SAS data sets.

General Form: DATA new-sasdataset;
MERGE sasdsnamel sasdsname? . . . sasdsnamen ;
BY variables ;

15.1 One-To-One Merging is done without a BY statement...joins observations by
position

Purpose: A one-to-one merge combines the first observation from all the data sets
in the MERGE statement into the first observation in the new data set,
the second observation from all the data sets into the second observation
in the new data set, and so on. The new data set has the same number of
observations as the largest data set in the MERGE statement.

General Form: DATA new-sasdataset;
MERGE sasdsnamel sasdsname?2 .. .sasdsnamen ;

57



Sample 1: One-to-One Merge...joins observations by position(e.g. by observation number)

DATA NEW;
MERGE NAMES SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT WEIGHT
1 PAUL M 1 27 72 140
2 JENNIFER F 2 28 64 135
3 RENEE F 3 35 54 128
4 MANUEL M 4 35 60 125
5 TONY M 5 32 68 130

SAS data set NEW

OBS NAME SEX AGE HEIGHT  WEIGHT

1 PAUL M 27 72 140
2 JENNIFER F 28 64 135
3 RENEE F 35 54 128
4 MANUEL M 35 60 125
5 TONY M 32 68 130

58



Sample 2: One-to-One Merge...joins observations by position(e.g. by observation number)

DATA NEW;
MERGE NAMES SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE HEIGHT WEIGHT
1 PAUL M 1 27 72 140
2 JENNIFER F 2 28 64 135
3 RENEE F 3 35 54 128
4 MANUEL M 4 35 60 125
5 TONY M

SAS data set NEW

OBS NAME SEX AGE HEIGHT WEIGHT

1 PAUL M 27 72 140
2 JENNIFER F 28 64 135
3 RENEE F 35 54 128
4 MANUEL M 35 60 125
5 TONY M



Sample 3: One-to-One Merge...joins observations by position(e.g. by observation number)

DATA NEW;
MERGE NAMES SURVY ;

SAS data set NAMES SAS data set SURVY

OBS NAME OBS SEX AGE HEIGHT WEIGHT
1 PAUL 1 F 28 64 135
2 JENNIFER 2 F 35 54 128
3 RENEE 3 M 35 60 125
4 MANUEL 4 M 32 68 130
5 TONY

SAS data set NEW

OBS NAME SEX AGE HEIGHT WEIGHT

1 PAUL F 28 64 135

2 JENNIFER F 35 54 128

3 RENEE M 35 60 125

4 MANUEL M 32 68 130

5 TONY

60



Sample 4. One-to-One Merge...joins observations by position(e.g. by observation number)

DATA NEW;
MERGE NAMES SURVY ;

SAS data set NAMES SAS data set SURVY
OBS NAME SEX OBS AGE HEIGHT NAME
1 PAUL M 1 27 72 SMITH
2 JENNIFER F 2 28 64 JONES
3 RENEE F 3 35 54 PETERS
4 MANUEL M 4 35 60 RUIZ
5 TONY M 5 32 68 ANGELO
SAS data set NEW
OBS NAME SEX AGE HEIGHT
1 SMITH M 27 72
2 JONES F 28 64
3 PETERS F 35 54
4 RUIZ M 35 60
5 ANGELO M 32 68



15.2 Match Merging

Purpose: Match merging combines observations from two or more SAS data sets based on the
values of one or more common variables specified in the BY statement.

The SAS data sets must be sorted by the BY-variable(s).

General Form: DATA new-sasdataset;
MERGE sasdsnamel sasdsname? . . . sasdsnamen ;
BY variable(s);

Sample 1:
DATA NEW ;
MERGE NAMES SURVY ;
BY NAME ;
SAS data set NAMES SAS data set SURVY
OBS NAME SEX OBS AGE HEIGHT NAME
1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 27 72 PAUL
4 RENEE F 4 35 54 RENEE
5 TONY M 5 32 68 TONY
SAS data set NEW
OBS NAME SEX AGE HEIGHT
1 JENNIFER F 28 64
2 MANUEL M 35 60
3 PAUL M 27 72
4 RENEE F 35 54
5 TONY M 32 68

62



Sample 2: Match Merge

DATA NEW;
MERGE NAMES SURVY ;
BY NAME;

SAS data set NAMES SAS data set SURVY

OBS NAME SEX OBS AGE  HEIGHT NAME

JENNIFER
MANUEL

F 28 64 JENNIFER
M
PAUL M
F
M

35 60 MANUEL
35 54 RENEE
32 68 TONY

A OWN P

RENEE
TONY

O wWwNPE

SAS data set NEW

OBS NAME SEX AGE HEIGHT

JENNIFER
MANUEL

F 28 64
M
PAUL M
F
M

35 60
35 54
32 68

RENEE
TONY

O wWNPEF



Sample 3: Match Merge - multiple BY-value(s) or “repeat” of BY-value(s)

DATA NEW ;
MERGE NAMES SURVY ;
BY NAME ;
SAS data set NAMES SAS data set SURVY
OBS NAME SEX OBS AGE HEIGHT NAME
1 JENNIFER F 1 28 64 JENNIFER
2 MANUEL M 2 35 60 MANUEL
3 PAUL M 3 27 72 PAUL
4 RENEE F 4 35 54 RENEE
5 TONY M 5 37 56 RENEE
6 32 68 TONY
SAS data set NEW
OBS NAME SEX AGE HEIGHT
1 JENNIFER F 28 64
2 MANUEL M 35 60
3 PAUL M 27 72
4 RENEE F 35 54
5 RENEE F 37 56
6 TONY M 32 68

64



Sample 4. Match Merge - multiple BY-value(s) or “repeat” of BY-value(s)

DATA NEW;
MERGE NAMES SURVY ;
BY NAME;

SAS data set NAMES

OBS NAME SEX

JENNIFER F
MANUEL M
PAUL M
RENEE F
RENEE M
RENEE

TONY M

~NoO o~ wWN R

SAS data set NEW

OBS NAME SEX AGE

JENNIFER
MANUEL
PAUL
RENEE
RENEE
RENEE
TONY

28
35
27
35
37
37
32

~No O bk~ WN -
< T

SAS data set SURVY
OBS AGE
1 28 64
2 35 60
3 27 72
4 35 54
5 37 56
6 32 68
HEIGHT
64
60
72
54
56
56
68

HEIGHT NAME

JENNIFER
MANUEL
PAUL
RENEE
RENEE
TONY

NOTE: MERGE statement has more than one data set with repeat of BY values.

65



16. Using the DROP = or the KEEP =

Purpose: The DROP= specifies variables that SAS should not write to the output
data set. If the option is associated with an input data set, the variables
are not available for processing. The DROP= option can be used in
either a DATA or PROC step. The KEEP= SAS data set option controls
which variables are processed or written to output SAS data sets during
a DATA or PROC step. If the option is associated with an input data set,
only those variables listed after the KEEP= option are available for
processing.

General Form: DATA new-sasdataset;
sasdsname(DROP = variablel variable2 ... variablen) ;

or
sasdsname(KEEP = variablel variable2 ... variablen) ;
Sample 1:

DATA NEW;
SET MALE(KEEP = NAME AGE) FEMALE(KEEP = NAME HEIGHT);

SAS data set MALE SAS data set FEMALE

OBS NAME AGE HEIGHT OBS NAME AGE HEIGHT
1 PAUL 27 72 1 JENNIFER 28 64
2 MANUEL 35 60 2 RENEE 35 54
3 TONY 32 68

SAS data set NEW

OBS NAME AGE HEIGHT

1 PAUL 27

2 MANUEL 35

3 TONY 32 :
4 JENNIFER . 64
5 RENEE . 54

66



Sample 2:

DATA NEW;

MERGE NAMES SURVY(DROP = NAME) ;

SAS data set NAMES

OBS

OO WN P

NAME

PAUL
JENNIFER
RENEE
MANUEL
TONY

SAS data set NEW

OBS

OB WNEF

NAME

PAUL
JENNIFER
RENEE
MANUEL
TONY

SEX

<ITTLZ

SEX

L

SAS data set SURVY
OBS AGE HEIGHT
1 27 72
2 28 64
3 35 54
4 35 60
5 32 68
AGE HEIGHT
27 72
28 64
35 54
35 60
32 68

NAME

SMITH
JONES
PETERS
RUIZ
ANGELO

67



17. WHERE STATEMENT

Purpose: The WHERE statement allows the user to select a subset of observations
satisfying one or more conditions from an existing SAS data set. This
statement can be used in either a PROC or a DATA step. The WHERE
statement may only be used in a DATA step with a SET, MERGE, or
UPDATE statement.

General Form:  WHERE where-expression ;
I
(A)

(A) where-expression a valid arithmetic or logical expression
Samples:

(1) WHERE SCORE > 50;

(2) WHERE DATE >= ‘01JAN89'D ;

(3) WHERE STATE = ‘MISSISSIPPI’ ;

(4) WHERE RACE= = ;

/*combines two conditions by finding observations that satisfy either condition.*/
(5) WHERE CITY = ‘NEW YORK’ OR CITY = ‘NEWARK’ ;

/*combines two conditions by finding observations that satisfy both conditions.*/
(6) WHERE SKILL EQ ‘SAS’ and YEARS EQ 4 ;

(7Y WHERE (NUM <2 OR NUM >4) ;

68



17.1 WHERE Operators

The following operators can be used only with WHERE processing.

17.1.1 BETWEEN—AND Operator

Purpose: Selects observations based on a range of values.

General Form: WHERE variable BETWEEN valuel AND value2;

valuel and value2 are constants or expressions which specify the limits of the range

of values...valuel and value2 are included in the range.

Samples:

(1) WHERE SALES BETWEEN 90 AND 100;

You can also combine the NOT operator with the BETWEEN—AND operator to
select values that fall outside the range.

(2) WHERE SALES NOT BETWEEN 90 AND 100;

69



17.1.2 CONTAINS Operator

Purpose: Select observations that contain the character string specified in the
WHERE expression.
General Form: WHERE variable CONTAINS ‘string’;
or

WHERE variable ? ‘string’;

The position of the character string in the variable’s value does not matter. The
CONTAINS operator distinguishes between uppercase and lowercase characters
when making comparisons.

Sample:  WHERE LASTNAME ? *‘Mc’;

70



17.1.3 IS NULL or IS MISSING Operator

Purpose: Selects all observations in which the value of a variable is missing.

General Form: WHERE variable 1S NULL ;

or

WHERE variable IS MISSING ;

Sample:
DATA NOTNULL ;
| NPUT NAME $ 1-8 AGE 11-12 ;
DATALI NES;
: 27
JENNI FER 28
RENEE 35
VANUEL :
TONY 32
PRCC PRI NT ;

WHERE NAME |S NOT NULL and AGE IS NOT M SSI NG ;
RUN;

Sample Output:

GBS NAME AGE
2 JENNI FER 28
3 RENEE 35
4 TONY 32

71



17.1.4 SOUNDS-LIKE operator in a WHERE clause

Purpose: Selects observations that contain a spelling variation of the word or words
specified in the WHERE expression.

General Form: WHERE variable =* ‘string’;

Sample:

DATA ED TNAME ;
| NPUT NAME $ ;

DATALI NES;

ALAN

ALLEN

ALLAN

DAVE

JOSEPH

PRCC PRI NT ;
WHERE NAME =* ‘ALAN ;
RUN;

Sample Output:

OBS NANVE
1 ALAN
2 ALLEN
3 ALLAN

72



17.1.5 LIKE Operator

Purpose: Selects observations with character values matching a specified pattern.
+
General Form:  WHERE variable LIKE ‘stringl1%string2’ ;

WHERE variable LIKE ‘stringl_string2’ ;

There are two special character available for specifying patterns:
% The percent sign tells SAS that any number of characters can occupy that position.

_ The underscore sign tells SAS to match one character in the value for each underscore
character.

Sample:

DATA SELECT ;
| NPUT NAMES $ ;
DATALI NES;
DI ANA
DI ANE
DI ANNA
DI ANTHUS
DYAN

PROC PRI NT ;
WHERE NAME LIKE ‘D AN or NAME LIKE ‘D AYA ;
RUN;

Sample Output:

oBS NAVES
1 DI ANA
3 DI ANNA
5 DYAN



EXERCISE 8 (computer-assisted)

Write one SAS program and include the following DATA and PROC steps:

(1) Creates a SAS data set Maryland.
Create a second SAS data set Virgina.

Each SAS data set represents sample traffic violations in Maryland and Virginia.

SAS data set Maryland

State Nunber Accidents Violation Code

MD 118 25
MD 120 10
MD 123 30
MD 124 30

SAS data set Virgina

State Nunber Accidents Violation Code

VA 454 25
VA 460 15

(2) Create the SAS data set CONCAT by concatenating the two

SAS data set Maryland and Virginia. The SAS data set will include all six

observations in the order they appear in the data sets Maryland and Virginia data sets.
(3) Sort the SAS data set CONCAT by Vi ol ati on_Code.

(4) Creates a SAS data set CODE and select only those observations
from the SAS data set CONCAT where the Violation_code is 10.

(5) Creates a SAS data set FEES which includes the variables Violation_Code
and FEE. The resultant SAS data set FEES is displayed below.

SAS Data Set FEES

Vi ol ati on_Code FEE

10 75
15 45
25 60
30 80

(6) Create a SAS data set and merge the data sets CONCAT and FEES so that the
variable FEE appears on each of CONCAT’s observations matching the Violation_Code.

(7) Check the SAS log and SAS Output. Is this the desired SAS Output?

74



EXERCISE 9 (computer-assisted)
Write one SAS program and include the following DATA step and PROC steps:
(1) A SAS DATA Step creates a SAS data set STUDY.

For instance, the SAS data set STUDY represents the variables ID TREATMENT and
RESPONSE. The SAS data set STUDY is shown below.

SAS data set STUDY

aBS | D TREATMENT RESPONSE
1 A 1 35. 45
2 A 2 39. 80
3 A 3 .

4 B 1 30. 53
5 B 2 32.75
6 B 3 37.90
7 C 1 42. 25
8 C 2 45.76
9 C 3 .

(@) Include a WHERE statement in a PROC PRINT step and obtain a listing of
the observations where the value of RESPONSE is missing.

(b) Include a WHERE statement in another PROC PRINT step and obtain a listing of the
observations where RESPONSE is between 32 and 38.

(2) Creates a SAS data set FINAL which includes the observations
for TREATMENT 2, where RESPONSE is greater than 35.

75



Other Base SAS software
features that may be helpful to
you



INFILE statement with FIRSTOBS = and OBS = options

There are a variety of options that can be used with an INFILE statement to control how data are
read and to allow the SAS program more control over the input operation.

INFILE statement with FIRSTOBS = and OBS = options ;
Purpose: To control which records are read from the data file.

General Form: INFILE fileref FIRSTOBS= nl OBS=n2;

I I

_ (A) (B)
(A) nl the record number of the first data line to read
(B) n2 the record number of the last data line to read

Sample external data: filenameis DATAL.txt

31 62 126
20 78 154
28 64 128
29 96 155
21 66 128
27 96 265
21 68 120
42 72 138

O~NOOITPRWN -

Sample Program:
FILENAME IN1 ‘drive:\path for the filename DATAL.txt’;
DATA TEMP1 ;

INFILE IN1 FIRSTOBS=3 OBS=7 ;

INPUT ID $ AGE PULSE_1 PULSE_2 ;

PROC PRINT ;
RUN;

Sample Output:

GBS ID ACGE PULSE 1 PULSE 2

1 3 28 64 128
2 4 29 96 155
3 5 21 66 128
4 6 27 96 265
5 7 21 68 120

77



INFILE Statement with MISSOVER option

Purpose: By default, SAS will go to the next data line to read more data if SAS has reached the
end of the data line and it still has more variables to read. The MISSOVER option
prevents SAS from going to the next data line to read values with LIST input style if
it doesn’t find values in the current line for all input variables. SAS assigns missing
values to any remaining variables.

General Form:  INFILE fileref MISSOVER ;

Sample external data: filename is DATA2

87 85
74 80 83

Sample Program:
FILENAME IN1 'WXYZABC.DATA2' ; /*syntax for SAS program executed on IBM/MVS */
DATA TEMP2 ;

INFILE IN1 MISSOVER ;

INPUT TMP1-TMP3 ;

PROC PRINT ;
RUN;

Sample Output:
GBS TMP1 TMP2 TMP3

2 74 80 83

78



INFILE Statement with STOPOVER option

Purpose: To halt program execution in case of missing data so the data can be set right. The
STOPOVER option stops processing the DATA step when an INPUT statement using
LIST input style reaches the end of the current record without finding values for all
variables in the statement. The system variable ERROR_ is set to 1, and the
offending data line will be printed to the SAS log .

General Form: INFILE fileref STOPOVER ;
Sample external data: filename is DATA3

87 85
74 80 83

Sample Program:

FILENAME IN1 'drive:\path for the filename DATA3.txt" ;
DATA TEMP3 ;

INFILE IN1 STOPOVER ;

INPUT TMP1-TMP3 ;

Sample SAS Log:

1

2 FI LENAVE | N1 ‘drive:\path for the filename DATA3.txt" ;
3

4 DATA TEMPS ;

5 INFILE INL  STOPOVER ;

6 INPUT  TWMP1 - TMP3 ;

7

NOTE: The infile INL is:
Dsnane=WWKYZABC. DATA3,
Uni t =3380, Vol une=DSA004, Di sp=SHR, Bl ksi ze=11475,
Lrecl =15, Recf m=FB
ERROR: | NPUT st atenent exceeded record | ength
| NFI LE WKYZABC. DATA3 OPTI ON STOPOVER speci fi ed.

RULE: R e e e e L e Rl T

1 87 85

TMP1=87 TMP2=85 TMP3=. _ERROR =1 N =1

NOTE: 1 record was read fromthe infile INL.

NOTE: The SAS System stopped processing this step because of
errors.

NOTE: SAS set option OBS=0 and will continue to check statenents.

WARNI NG The data set WORK. TEMP3 may be inconplete. Wien this

step was stopped there were 0 observations and 3 vari abl es.



Multiple INFILE and INPUT Statement

Purpose: Read two or more raw data files into a SAS data set with a single DATA
step.

Sample external files: Both files contain the same number of records.

External filename is NUML1.txt’ External filename is NUM2.txt’
12 3 4 5 6
789 10 11 12
13 14 15 16 17 18

Sample Program:

FILENAME IN1 ‘'drive:\path for filename NUML1.txt" ;
FILENAME IN2 'drive:\path for filename NUMZ2.txt" ;

DATA TEMP5;
INFILE IN1;
INPUT A B C;
INFILE IN2;
INPUT X Y Z;
PROC PRINT;
RUN;
Sample Output:
aBS A B C X Y Z
1 1 2 3 4 5 6
2 7 8 9 10 11 12
3 13 14 15 16 17 18

80



DO/END STATEMENT

Purpose: Tells SAS that all statements in the DO loop are executed repetitively as a unit until a
matching END statement is encountered.

General Form 1: DO index-variable = start TO stop BY increment;

I | | |
(A) (B) (®) (D)

(... include other the SAS statements )

END ;

(A) index- variable names a variable whose value changes in each iteration of the loop. This
variable is kept in the SAS data set.

(B) start starting value for the index-variable.
(C) stop ending value for the index-variable.
(D) increment by default the index-variable is incremented by 1 before each iteration of
the DO loop.
Sample 1:
DATA LOOP1 ;
DO X=1TO 10 BY 2;
Y =SQRT(X) ;
OUTPUT;
END;
PROC PRINT;
RUN;
Sample Output 1:
OBS X Y
1 1 1. 00000
2 3 1. 73205
3 5 2. 23607
4 7 2. 64575
5 9 3. 00000

81



DO/END Statement

Purpose: Used to execute a group of statements when a condition is met.
General Form 2: IF condition then DO ;

..... other SAS statements

END ;
Sample 2:

DATA DOLOOP? ;
INPUT MONTH ;
IF MONTH LE 0 THEN DO;
BADDATA + 1;
MONTH =.;
END ;
DATALINES;

PROC PRINT:
RUN:

Sample Output 2:
oBS MONTH BADDATA

G WNPEF
NFRFR,ROO

82



ARRAY STATEMENT

SAS does have arrays, but they are used in different ways than in traditional programming languages like C,
FORTRAN, and BASIC. An array in SAS consists of variables. You use arrays when you want to do the same thing
to each variable in the array, and you don’t want to write a separate statement for each variable. Arrays are
temporary in SAS, existing only for the duration of the DATA step in which they are defined. Arrays provide ways
to shorten or simplify your SAS programs.

Purpose: An ARRAY is a convenient way of defining a set of variables to be processed.

General Form: ARRAY arrayname (n) [$] variablel...variablen;

I I | I
o A (B ©) (D _ _
(A) arrayname identifies the group of variables...must not match any of the variable names in
your data set or any SAS keywords.

(B) n number of variables
©) % indicates character variable
(D) variablel...variablen lists variables (must contain either all numeric or all character)

The ARRAY statement must be used before the arrayname is referenced in the DATA step.
Sample Program 1:

DATA RECODE,
INPUT A B C D;
IFA=99 THENA=.;
IFB=99 THENB=.;
IFC=99 THENC=.;
IFD=99 THEND=.,

DATALINES;

42 43 26 99

43 14 99 34

42 99 53 25

99 34 33 94

PROC PRINT ;

RUN;

Sample Output 1: oBS A B C D
1 42 43 26 :
2 43 14 : 34
3 42 : 53 25
4

34 33 94

83



Sample 2:

The SAS program in Sample 1 can be re-coded to reduce the amount of
repetitive coding.

Sample Program 2:

DATA ARRAY1 ;
INPUT ABC D ;
ARRAY NINES(4) ABC D;
DO COUNT =1 TO 4 ;
IF NINES(COUNT) = 99 THEN NINES(COUNT)=. ;
END;
DROP COUNT ;
DATALINES;
42 43 26 99
43 14 99 34
42 99 53 25
99 34 33 94

PROC PRINT ;
RUN;

Sample Output 2:

aBS A B C D
1 42 43 26

2 43 14 34
3

4

42 . 53 25
. 34 33 94

84



Sample 3:

Note: The number of elements in the array may be unknown. In such a case the asterisk
replaces the actual number in the ARRAY statement. The DIM function returns the
number of elements in the array.

Sample Program 3

DATA ARRAY?2 ;
INPUT ABCD
ARRAY NINES(*) A B C D ;
DO COUNT = 1 TO DIM(NINES) ;
IF NINES(COUNT) = 99 THEN NINES(COUNT) = . ;
END;
DROP COUNT ;
DATALINES;
42 43 26 99
43 14 99 34
42 99 53 25
99 34 33 94

PROC PRINT ;
RUN;

Sample Output 3:

42 43 26 :
43 14 : 34

. 53 25
34 33 94

AWN P
N
N



Sample 4.
Use an ARRAY statement to create new variables.
Sample Program 4:

DATA ARRAY3 ;
INPUT LETTERS $ ;
ARRAY NEWVAR(3) $ SUBT1-SUBT3 $;
DO | =1 TO 3 ;
NEWVAR(I) = SUBSTR(LETTERS, 1, 1) ;
END ;
DROP | ;
DATALINES;
ABC
LPY

PROC PRINT ;
RUN;

Sample Output 4:
GBS LETTERS SUBT1 SUBT2

1 ABC A B
2 LPY L P

86

SUBT3

Y



Sample 5:

Use an ARRAY to accomplish the following tasks:

(1) If the value of a variable is less than 0, then set it to missing.

(2) Keep count of the number of times this occurs for each observation.
Sample Program 5:

DATA ARRAY4;
INPUT X1-X4;
ARRAY TEST(4) X1-X4 ;
COUNTER = 0 ;
DO NUM = 1 TO 4;
IF TEST(NUM) < 0 THEN DO ;
TEST(NUM) = . :
COUNTER +1 ;
END;
END;
DROP NUM ;
DATALINES;
013 -6
1-70 0
20-15
12 -3 4

PROC PRINT ;
RUN;

Sample Output 5:

GBS X1 X2 X3 X4 COUNTER
1 0 1 3 1
2 1 . 0 0 1
3 . 0 : 5 2
4 1 2 4 1

87



Sample 6:

(1) Suppose we have the data lines :

P1 P2 P3 P4  P5
2 0 1 9 1
9 1 2 0 2
0 9 2 0 1

(2) Create a SAS data set and assign the following scores
39.3, 84.4, 774, and 47.0

for each of the values 0, 1, 2 and 9 respectively.
(3) Use the SUM function to determine the sum of the scores.
Sample Program 6 :
DATA TEST ;

| NPUT P1 P2 P3 P4 P5 ;
ARRAY REN(5) P1 - P5 ;

DOJ=1TOS5 ;
IF REN(J) = 0 THEN REN(J) = 39.3

ELSE IF REN(J) =1 THEN REN(J) = 84. 4 ;
ELSE IF REN(J) =2 THEN REN(J) = 77.4 ;
ELSE IF REN(J) =9 THEN REN(J) = 47.0 ;
END;

SCORE = SUM P1, P2, P3, P4, P5) ;

DROP J ;

DATALI NES;

2 01 9 1

9 1 2 0 2

0O 9 2 0 1

PROCC PRI NT ;

RUN;

Sample Output 6:

OBS Pl P2 P3 P4 P5 SCORE

1 77.4 39.3 84.4 47.0 84. 4 332.5
2 47.0 84.4 77.4 39.3 77.4 325.5
3 39.3 47.0 77.4 39.3 84. 4 287. 4

88



SET Statement with OBS = data set option

Purpose: Subset a SAS data set by limiting the number of observations that SAS reads.

General Form: SET sasdataname (OBS =n);
I
G
(A) n number of the last observation to be read
Sample 1.

DATA SUBSET3;
SET ALL (OBS=10);

Subset a SAS data set by indicating a starting point to select observations
General Form: SET sasdatasetname (FIRSTOBS = n)
I
(B)

(B) n the first observation to be read from the SAS data set

The two data set options, FIRSTOBS = and OBS = are often used together to define a range of

observations to be selected.

Sample 2:

Subset a SAS data set by indicating which observations you want.
DATA SUBSET4 ;
SET ALL (FIRSTOBS = 10 OBS = 100) ;

Note: FIRSTOBS = cannot be used when a WHERE statement or when a
WHERE = data set option is used in the DATA step.

89



Four variables used in the SET and MERGE statements
(1) IN = variable
Purpose: To determine if the data set contributed to the observation
currently in the program data vector. Internally, the special IN = variable is set
to 1 when data set contributes to the current observation.
(2) END = variable
Purpose: To determine if the data set contributed the last observation.
(set to 1 after the last observation is read)
3) FIRST.by-variable
LAST .by-variable

Purpose: FIRST.by-variable and LAST .by-variable are automatically created and named
by SAS for each variable in the BY statement.

FIRST.by-variable =1 for the first observation in a by-group, otherwise FIRST.by-variable =0
LAST.by-variable =1 for the last observation in a by-group, otherwise LAST .by-variable =0

Note: The FIRST.by-variable and the LAST.by-variable appear in the program data vector,
but not in the SAS data set.

90



MERGE with IN =

General Form:

(A) variablel

(B) wvariable2

Sample:

variable and END =

variables ;

variable

I
(A)

a temporary numeric variable

The value of variablel is 1 when the data set contributes
to the current observation; otherwise, the value of variablel is 0.

The value of variable?2 is 1 after the last observation is read.

DATA NEW2 ;
MERGE NAMES CREDIT END=E ;
BY NAME ;

FIRSTNAM
LASTNAM

END=E ;

PROC PRINT ;

TITLE 'SAS Data Set NEW?2 "' ;

RUN;

Sample Output:

GBS

A WNEF

NANVE

JENNI FER
IVANUEL
VANUEL
TONY

GBS

WN -

FIRST.NAME ;
LAST.NAME ;

a temporary numeric variable

SAS data set NAMES

0BS

NAVE

JENNI FER
MANUEL
TONY

SAS data set CREDI T

NAVE

MANUEL
MANUEL
TONY

DATE CRED T

11780 355
11781 125
11842 350

SAS data set NEW

DATE

11780
11781
11842

CREDI T

355
125
350

FI RSTNAM

RPORR

LASTNAM

RPROR

I
(B)

END

ROOO

MERGE sasdsnamel sasdsname2 (IN = variablel) END = variable2; BY

91



Sample: The IN = variable

DATA MERGE;

MERGE NAMES (IN=A) SURVY (IN=B) ;
BY NAME ;

IFA=1 AND B=1;

PROC PRINT,;
RUN;

SAS data set NAMES

GBS NAME SEX
1 JENNI FER F
2 MANUEL M
3 PAUL M
4 RENEE F
5 TONY M
Sample Output : SAS data set MERGE
GBS NAVE
1 JENNI FER
2 MANUEL
3 RENEE
4 TONY

92

SAS data set SURVY

OBS ACE HEl GHT
1 28 64
2 35 60
3 35 54
4 32 68

F 28 64
M 35 60
F 35 54
M 32 68

NAME

JENNI FER
MANUEL
RENEE
TONY



Sample:

DATA ACCTCPU ;
SET TEMPS;
IF FIRST.CPUNUM = 0 AND LAST.CPUNUM = 1 THEN DELETE;
BY ACCT CPUNUM;

PROC PRINT ;
RUN;

Sample Output :

SAS data set ACCTCPU
oBS ACCT CPUNUM

VXML
VXML
NUA1
NUA1
NVJ 2
NVJ 2
NVJ 2
NVJ 2
NVJ5

OCO~NOUITARWNE
RPOWNRFPONNE



SET statement, BY statement with NOTSORTED option

Purpose: The NOTSORTED option in the BY statement is useful when data are grouped
according to the values of a variable (in BY groups), but the groups are not in
ascending or descending order.

General Form: BY by-variable NOTSORTED ;
I
(A)

(A) NOTSORTED indicates that observations with the same BY value are grouped
together, but are not sorted

Sample:
The data set WEATHER has the observations with the same month value grouped
together (the values for month are in calendar month rather than alphabetical).

SAS data set WEATHER
OBS MONTH TMP

1 NOV 72
2 NOV 68
3 DEC 58
4 DEC 60
5 JAN 45
6 JAN 56
DATA SUBSETS ;
SET WEATHER ;

BY MONTH NOTSORTED ;
IF FIRST.MONTH ;

PROC PRINT ;
TITLE 'SAS DATA SET SUBSET6';
RUN;

Sample Output:
SAS DATA SET SUBSET6

GBS MONTH  TMWP

1 NOV 72
2 DEC 58
3 JAN 45

94



PROC FORMAT procedure
***SAS user-defined formats***
Purpose: Create user-defined formats
General Form: PROC FORMAT ;
VALUE format-name /*general form of the VALUE statement*/

rangel = ‘label-1’
range2 = ‘label-2’

format-name assigns a name to the format

= canot be longer than 8 characters

= cannot end with a number

= cannot contain any special characters except the underscore
= cannot be the name of a SAS format

= must start with a $ if it applies to a character variable

range specifies one or more values, a range of values, or a list of ranges that a
variable format can have.

character values must be enclosed in quotes

formatted-value  the label can be as long as 200 characters



***SAS user-defined informats***
Purpose:  Create user-defined informats
General Form: PROC FORMAT ;
INVALUE informat-name /*INVALUE statement*/

rangel = ‘informatted-valuel’
range2 = ‘informatted-value2’

informat-name assigns a name to the informat...

IMPORTANT...
= must be a valid SAS name
canot be longer than 7 characters
must not end with a number
cannot contain any special characters except the underscore
cannot be the name of an existing informat
must start with a $ if it’s character informat data

range  specifies one or more values, a range of values, or a list of ranges that a variable
informat can have.

For instance...

= character values must be enclosed in quotes

range meaning example
value a single value 12
value,...,value a list of values 12, 24, 68
value-value a range of values 12-68
range,...,range a list of ranges 12-24,34-68

96



Examples:

Assigning number to a character string
= single numbers

PROC FORMAT ;

VALUE QFMT 1=‘APPROVFE’
2 = ‘DISAPPROVFE’

= ranges of numbers

PROC FORMAT ;
VALUE AGEFMT

LOW-<0 = ‘MISCODED’
0-12 = ‘CHILD’
13-19 = ‘TEEN’
20-HIGH = ‘ADULT’

= several values that are not in a range

PROC FORMAT ;
VALUE SEXFMT
1=‘FEMALFE’
2=‘MALFE’
0,3-9 =‘MISCODED’

Assigning character string to another character string
= character values and ranges of character value

PROC FORMAT ;
VALUE $GRADE

‘A = ‘GOOD’

‘B'-'D' = FAIR’

‘E’ = ‘POOR’

I, = ‘SEE INSTRUCTOR'’
‘OTHER’ = ‘MISCODED’



Create permanent formats

Libname libref  ‘drive:\pathname’ ;

PROC FORMAT LIBRARY = libref;
/* the special reserve word ‘LIBRARY’ is required*/

VALUE format-name
range = ‘formatted valuel’
range = ‘formatted value2’

INVALUE informat-name
rangel = ‘informatted valuel’
range2 = ‘informatted value2’

98



Example SAS program...(programmed using SAS on the Mac)

Creates permanent user-defined informat as well as user-defined formats.

LI BNAME LI BRARY "MNO NTCEH SASPER\E'

PROC FORVAT LI BRARY = LI BRARY ;
| N\VALLE abc
‘A - <'M =1
/* the second val ue of the first range i s excluded... noni ncl usi ve
not at i on*/
‘M - 'Z
OHR

2
3
VALLE SVOKEFNT

" YES
'NO

N -
Il

VALLE $SSOEMT
' FENALE
*MLE

'F
‘M
DATA LI BRARY, TEWPIO

INFUIT INTIAL abc. ID$ SEX$ SVIKER AE PULSE1L1 RULSE 2
FORVAT X $SEFAM.  SMIKER  SMOKEAMT.

DATALI NES

: 1 M 1 31 62 126
B 2 F 1 20 78 154
L 3 M 2 28 o4 128
N 4 F 2 29 96 155
P 5 M 1 21 66 128
W 1 F 1 27 96 265
: 2 M 2 21 68 120
C 3 F 2 42 72 138

/*you may also access the user-defined informats and formats in the same SAS program*/
PROC PR NI' DATA=LI BRARY. TEVPI10;

RN

99



Example SAS Log:

3 LI BNAME LI BRARY "M NTCEH SASPERVE'

NOTE Li bref LIBRARY was successful ly assigned as fol | ons:
Engi ne: V612
Physi cal Nane: MANA NTCBH SASPERVE

4
5 PROC FCRVAT LI BRARY = LI BRARY ;

6 | NVALULE abc

7 A - <'M =1 /* the second val ue of the first range
8 'M - 'Z =2 is excluded... noninclusive notation*/
9 OHR =3

10 X

NOTE | nformat ABC has been out put .

11 VALLE SMOKERM

12 1="YES

13 2="NO

14 ;

NOTE Fornat SMOKEFMI has been witten to LI BRARY. FORVATS

15 VALLE 3$SBEXFMT

16 '"F ='FBWLE

17 "M ="MALE

18 ;

NOTE Fornat $SEXFMI has been witten to LI BRARY. FCRVATS

19

NOTE PROCEDURE FCRVAT el apsed tine was 1.40 seconds

20 DATA LI BRARY. TEHW10 ;

21 INPUT INTIAL abc. ID$ SEX$ SMKER AE PUSE1 PUSE?2 ;
22 FORWT SEX $SOFMI.  SVOKER SMOKEFMT. |
23 DATALI NES

NOTE The data set LI BRARY. THW10 has 8 observations and 7 vari abl es.
NOTE DATA statenent el apsed tine was 2.09 seconds

32

3

34 PRCC PR NI DATA=LI BRARY. TEWPLO;
35 RN

NOTE PROCEDURE PR NT el apsed tine was 0. 68 seconds

100



Example SAS Output:

g

oO~NOUOT A WN P

=

P WLWWWwWkFEFEW

ID

WNRFRPOOPRRWNE

The SAS System

EX

MALE
FEVALE
MALE
FEVALE
MALE
FEVALE
MALE
FEVALE

YES
YES
NO
NO
YES
YES
NO
NO

31
20
28
29
21
27
21
42

SR A PULSE1

62
78
64
96
66
9%
68
12

126
154
128
155
128
265
120
138

PULSE 2

101






